Как запрограммировать 3D-принтер
Краткая инструкция по настройке принтера:
- Выбрать 3D-модель. Изделие можно нарисовать самому в специальном CAD-редакторе или найти готовый чертеж — в интернете полно моделей разной сложности.
- Подготовить 3D-модель к печати. Это делают методом слайсинга (slice — часть). К примеру, чтобы распечатать игрушку, ее модель нужно с помощью программ-слайсеров «разбить» на слои и передать их на принтер. Проще говоря, слайсер показывает принтеру, как печатать предмет: по какому контуру двигаться печатной головке, с какой скоростью, какую толщину слоев делать.
- Передать модель принтеру. Из слайсера 3D-чертеж сохраняется в файл под названием G-code. Компьютер загружает файл в принтер и запускает 3д-печать.
- Наблюдать за печатью.
Самовоспроизведение
Некоторые недорогие 3D-принтеры могут распечатывать часть собственных деталей. Один из первых подобных проектов — RepRap (реализуется английскими конструкторами из университета Бата), который производит более половины собственных деталей. Проект представляет собой разработку с общедоступными наработками и вся информация о конструкции распространяется по условиям лицензии GNU General Public License. Ярким активистом движения 3D-печати и этого сообщества можно с полной уверенностью считать молодого изобретателя из Чехии, Джозефа Пруза, в честь которого была даже названа одна из самых известных моделей трёхмерного принтера — «Mendel Prusa».
Что такое 3D-принтер
На канале уже выложена уйма видеороликов по этим принтерам. А то, что они могут делать вообще не укладывается в голове. Это же совсем другой уровень развития нашей цивилизации.
Создала это чудо широко известная компания Z Corporation (головное предприятие в г.Берлингтон, США), специализирующаяся на создании и внедрении программного обеспечения для автоматизированного проектирования, т.е. программ, которыми пользуются дизайнеры, архитекторы, медики, машиностроители, проектировщики, рекламные агенства, художники и др.
Вы даете на печать чертеж (точно так же, как дать на распечатку простой вордовский документ), принтер сначала проверяет этот чертеж на ошибки (огромный плюс), и только после этого приступает к распечатке, т.е. созданию 3-х мерной модели.
Эту машину распечатал 3D принтер
Это тоже продукт распечатки 3D принтера
Вот такую штуковину распечатал 3D принтер
Для этого в принтере имеются специальные катушки с намотанным на них в виде нитей полимерным материалом (пластик, воск, выжигаемый пластик) разных цветов, которые расплавляются в процессе печати и наслаиваются строго по чертежу, с точностью до 138 микрон.
Материал очень быстро (в считанные секунды) отвердевает без каких-либо швов. Детали выглядят так, словно они изготовлены литьем под давлением. Детали получаются очень прочными и высокоточные. Буквально на другой день готовую модель можно проверить в действии. После затвердевания детали поддаются практически любой обработке, их можно резать, сверлить, шлифовать, красить и гальванизировать.
А как вам такой макет? Это тоже продукт распечатки 3D принтера.
А этот макет вообще шедевр. Даже не верится, что он распечатан на 3D принтере.
Технология 3D печати
Когда я работала на одном крупном машиностроительном заводе по производству электропогружных насосов для нефтяных компаний, то мы в нашем цехе производили сборку отдельных узлов этих насосов.
На наших проектировщиков возлагалась задача запустить в производство совершенно новые модели. Честно сказать справлялись они с этим не очень хорошо.
Мы вытачивали, шлифовали, и подгоняли эти самые детали по их чертежам, которые при сборке оказывались совершенно не работоспособными.
Огромные деньги уходили на ветер, не говоря уже о затраченном времени и силах. Весь цех работал по несколько месяцев совершенно в холостую, из-за какой-нибудь незначительной ошибке в чертеже.
Сегодня же предприятию достаточно приобрести такой принтер и прежде, чем запускать детали в производство, распечатать и опробовать, не тратя огромные деньги силы и время.
А теперь при помощи такого принтера можно за несколько часов собрать готовую и действующую модель чего угодно. Начиная от игрушки, и заканчивая межпланетного корабля или человеческого сердца. Вы можете себе такое представить?
Компания Z Corporation выпускает и специальные программы, в которых можно подготовить чертеж. Есть даже программа для медицинских нужд по проектированию моделей человеческого организма, которая может считывать данные рентгенограмм и МРТ.
Уже есть в продаже даже 3D-принтеры для домашнего использования и даже модели для самостоятельной сборки от фирмы Cupcake.
ТЕХНОЛОГИИ 3D ПЕЧАТИ
3D-печать может осуществляться разными способами и с использованием различных материалов, но в основе любого из них лежит принцип послойного создания (выращивания) твёрдого объекта.На данный момент времени существует две основных технологии выращивания слоев, это лазерная и струйная.
Самая старая и пожилая – лазерная, включающая в себя стереолитографию (SLA), позволяющую создавать трехмерную модель по компьютерным CAD-чертежам. Она и была придумана в 1986 году Чарльзом Халлом. Принцип стереолитографии основывается на фотополимере, который находится в жидком состоянии. При просвечивании этого полимера специальным ультрафиолетовым лучом он застывает, образуя очень плотный и жесткий каркас.
В комплекте с лазерным 3D-принтером поставляется специальная программа, разрезающая нужную компьютерную 3D-модель на множество слоев толщиной примерно в 0.1 мм. Кроме того, она переводит каждый слой в рисунок, который впоследствии и начинает “печататься”. Фотополимер заливается тонким слоем, просвечивается, застывает, сверху накладывается следующий слой, который вновь застывает под ультрафиолетовым лучом. После многократного повтора таких действий образуется готовая модель прототипа, после чего она промывается и очищается от лишних остатков полимера. На SLA-принтерах можно печатать детали относительно больших размеров до 75 см в высоту. Однако сами устройства очень дороги и отличаются большими размерами величиной размером с немаленький шкаф, они весят около тонны, а стоят в районе 150 тысяч евро. Кроме того, следует отметить и небольшую скорость воспроизведения – всего несколько миллиметров в час. Компенсирует медленную скорость и большую цену высокое качество конечной модели, которая к тому же становится очень надежной и прочной.
Струйная 3D-печать очень схожа с работой обычного принтера, только вместо краски соплом выдавливается некоторое количество разогретого пластика на охлажденную платформу, это так называемая Fused Deposition Modeling (FDM) технология. Капли очень быстро застывают и образуют один из слоев будущей трехмерной модели (как и в лазерной печати, создание модели ведется послойно). NASA даже собирается интегрировать такой 3D-принтер в космический корабль, рассчитанный на длительные экспедиции.
Ведь астронавтам наверняка понадобится какая-то деталь для ремонта или замены, и подобное печатающее устройство попросту нужно. Все-таки компактный 3D-принтер с несколькими десятками килограмм исходного материала куда компактнее полновесного механического цеха. Существует технология струйной 3D-печати и с использованием полимерного порошка. Компания Z Corporation активно ее продвигает, причем в последнее время весьма и весьма успешно. Специальная головка впрыскивает на гипсовый или крахмальный порошок клеящую основу, которая при застывании образует один из слоев будущей модели. Изюминка данной технологии состоит в том, что в клей можно добавлять красящие вещества и делать модель не только объемной, но и разноцветной. Принтеры, работающие по такому принципу, стоят относительно немного – от 8 до 30 тысяч долларов, что в десятки раз меньше стоимости лазерных аналогов. Компания ProMetal использует схожий принцип 3D-печати, что и Z Corporation, только вместо порошка на гипсовой основе используется металлическая крошка. Ну а дальше дело за малым – обжечь получившуюся модель в печи и получить готовую модель.
Как работает 3D-принтер
По сравнению с печатным принтером, переносящим электронный текст на плоскую бумагу, 3D-принтер имеет дело с трехмерной информацией. Одним словом, он воссоздает объект таким, какой он есть.
Как же печатает 3D-принтер? Вначале создается цифровая модель объекта на компьютере с помощью специальной программы. Она как бы «расчленяет» модель на слои, после чего в действие вступает принтер. Как и у его печатающего «собрата», у 3D-принтера есть свои чернила, правда, состоящие из композитного порошка.
Около 10 лет назад использовался всего лишь один вид «чернил» — пластик АВС. Сегодня их уже более сотни – полипропилен, бетон, целлюлоза, нейлон, металлические порошки, гипс, шоколад и множество других.
В процессе работы исходный материал превращается в массу, которая наносится слой за слоем на рабочую поверхность через специальное сопло. После нанесения очередного слоя поверх него может накладываться клеевое покрытие, затем снова слой «чернил». И так до полного воспроизводства объекта. Работу 3D-принтер можно посмотреть на видео.
Но это общий принцип работы 3D-принтера, так называемая технология быстрого прототипирования. На ее основе разработано несколько способов. Вот лишь некоторые из них.
Функциональность печатных изделий
Она зависит от нескольких факторов:
- качества печати;
- используемого материала и др.
Домашние варианты подходят, чтобы печатать шестеренки, например, для самодельных роботов или корпуса для электронных девайсов. Опытным любителям под силу печать уникальных изделий из современного композитного материала с добавками углеволокна. «Напечатать» игрушки, ручки для посуды и прочее – проблем не составляет. Но, с помощью принтеров можно отремонтировать вещи раритетные, с производства снятые давно.
В России выпуск собственных 3D-принтеров тоже отлажен. Изделия, с помощью их изготовленные, не хуже по качественным характеристикам зарубежным аналогам. Кроме этого, всегда есть, куда обратиться, если потребуется сервисное обслуживание.
Есть еще одна разновидность машин, которые работают с:
- смолами жидкими, для отверждения которых используют свет;
- порошками металлическими и пластиковыми, для спекания которых применяют лазеры;
- изготавливающие из обычной бумаги трехмерные предметы.
Быстрое пропитывание
Независимо от нюансов, основано изготовление с помощью этих устройств на быстром пропитывании. Данная концепция предполагает быстрое формирование опытных образцов для демонстрации возможностей, которые дает будущий продукт.
Технология предполагает не удаление материалов, как это бывает при фрезеровании, ковке, сверлении и т.д., а послойное наращивание, т.е. постепенное увеличение массы.
Развитие трехмерной печати в настоящее время идет в нескольких направлениях:
- STL – стереолитография;
- FDM – использование термопластов;
- SLS – спекание лазером.
Второй метод наиболее широко применяем.
Способствую этому такие факторы:
- применение недорогих пластиков;
- техника, простая в эксплуатации.
Работа с терпомпластами, предусмотренная этой технологией, включает использование полилактида, получают который из кукурузы и тростника сахарного. Поэтому, его основным преимуществом считается экологическая чистота.
Виды и типы
Виды по технологии печати
Существует десяток технологий трехмерной печати:
- FDM. Работа основана на застывании материала при охлаждении. Раздаточная головка послойно наносит разогретый материал на основу. Слои сцепляются друг с другом и быстро остывают. Поддерживается печать несколькими цветами. К принтерам, работающим по технологии FDM, причисляют мэйкерботоподобные, кулинарные (для работы с шоколадом, глазурью) и медицинские агрегаты (печатают гелями с жидкими клетками), Stratasys-принтеры.
- Polyjet. Появившаяся в 2005 году методика создания пространственных объектов путем полимеризации фотополимера под воздействием лазерного излучения. Фотополимер применяется преимущественно в медицине: он легкий и хрупкий, а технология печати обеспечивает высочайшую детализацию прототипа.
- MJM. Многоструйное моделирование посредством подачи материала через десятки микроскопических сопел. Из-за хрупкости готовых моделей и дороговизны расходных материалов технология применяется редко, разве что для создания силиконовых форм для литья.
- Lens. Расходный материал, выдавливаемый из сопла, облучается лазером и тут же спекается. Создает объекты из металлического порошка (частицы титана, стали). Порошки могут перемешиваться, создавая сплавы уже во время печати детали.
- LOM. Ламинирование – формирование композиции из ламинированных листов. Нужные детали вырезаются лазером, накладываются и склеиваются (спрессовываются) в будущую модель. В качестве расходника применяют бумагу, алюминиевую фольгу, которая спекается под воздействием ультрафиолета, пластик. Преимущество метода – копеечная цена расходников (бумаги).
- SLA. Стереолитография или фотополимеризация – прототип выращивается на помещенной в жидкую ванну сетке. Сначала ее покрывает слой вещества толщиной до 0,13 мм (разрешение). Лазер сверху обрабатывает те участки полимера, которые должны затвердеть. Платформа опускается на 0,05-0,13 мм в зависимости от разрешения и процесс повторяется. Деталь нуждается в постобработке – шлифовании, иногда в обработке в ультрафиолетовой духовке. Не позволяет печатать двумя материалами или цветами.
- LCD. Ультрафиолетовая светодиодная матрица засвечивает фотополимерный материал через жидкокристаллический экран. Последний управляет степенью поляризации света по всей своей площади, формирую матрицу будущего слоя детали.
- DLP. Вид SLA-печати, где в качестве исходников применяются жидкие фотополимерные смолы. Для полимеризации (отверждения) полимера применяется обычный видимый свет. Модель может формироваться как на поднимающейся, так и на опускающейся платформе.
- SLS. Относится к методам создания прототипов на базе выровненного слоя порошка, который спекается лазерным лучом. Технология позволяет работать с керамическим, металлическим порошками, стеклом, пластиком, получать мелкие и сложные детали. Не спекшийся порошок минимизирует количество расходуемых материалов.
- EBM — электронно-лучевая плавка порошка металла в вакуумной камере. Для формирования модели задействуется металлическая глина: порошок металла, органический клей и вода. Из-за нагревания смеси вода с клеем испаряются, а частицы стружки сплавляются.
- 3DP. Трехмерная струйная печать. Заключается в чередовании нанесения слоев порошка и клея. В итоге получается модель из материала, схожего на гипс. Поддерживает многоцветную печать, в качестве порошка применяется резина, пластик, дерево, сахар.
- Цветные. К цветным относят следующие методы: FDM, 3DP, EBF, LOM, MJM. Для формирования цветных прототипов нужны аппараты с несколькими экструдерами. Второй метод – сублимация – нагрев красителя в нужных местах до его испарения.
По типу применяемых расходников
В качестве расходников применяется несколько материалов.
Порошки | Печатающая головка наносит на подложку слой клея в нужных местах, валик – слой порошка (металлической пудры), спекаемого с веществом. |
Гипс | Предыдущий вариант, где вместо металлического порошка применяют гипс, шпаклевка, цемент обязательно со связующим компаундом. |
Полимеры | Жидкие фотополимеры затвердевают под воздействием электромагнитных излучений (метод SLA). Расплавленные пластиковые нити (PLA, PVA, ABS) послойно наносятся на подложку и шустро затвердевают. |
Воск | Доступный легко плавящийся материал для получения высококачественных деталей, прост в работе. |
Критика и проблемы
Медленно и без гарантий: печать довольно медленная, недостаточно точная. Огромная проблема в любительских принтерах — брак. Например, деталь может отклеиться от подложки прямо во время печати, и произойдёт ад. Или моторы раскалибруются, и сопло начнёт промазывать мимо нужных мест.
Низкая эффективность: чтобы напечатать деталь 10 × 10 см, нужен принтер размером как минимум 50 × 50 см, который будет стоить несколько сотен долларов.
Не самые прочные материалы: 3D-печать пока что ограничена пластиками и смолами. Есть отдельные технологии печати на базе металлического порошка, но если вам нужна стальная деталь — вам нужен не 3D-принтер, а нормальный токарь и станок. Но на станке можно сделать не всякую деталь.
Не всегда понятно зачем. В промышленности 3D-принтеры используют для прототипирования, но в массовом производстве эти технологии не используются. Для домашнего применения тоже неясно: на 3D-принтерах печатают маленькие пластиковые штучки для любительских проектов… и всё. Очень мало случаев, когда обычный человек мог бы захотеть напечатать у себя дома что-то применимое в хозяйстве.
3D-печать в гражданском строительстве
3D-печать в гражданском строительстве набирает популярность за последнее десятилетие, как и в аэрокосмической и биомедицинских отраслях. Эта революционная производственная техника основана на ее уникальной возможности создавать любую геометрическую форму без каких-либо формальных ограничений, сводя к минимуму отходы, но повышая производительность и результаты. Активное движение строительной отрасли навстречу автоматизации за последнее время достигло важных рубежей, включая создание первых конструкций при помощи роботизированных «рук» и технологии 3D-печати.
Применение метода 3D-печати в создании структурных элементов из полимерных материалов, бетона и металлов становится все распространеннее.
Эти техники в гражданском проектировании могут создавать свободные формы и инновационные архитектурные конструкции благодаря использованию программному обеспечению, интегрированному в СAD.
Однако несмотря на значительные исследования в аэрокосмической отрасли и биоинженерии по оценке и анализу этого механизма, по прежнему недостаточно понимания по его использованию, воздействия 3D-напечатанных материалов в гражданских сооружениях, как с точки зрения свойств материалов, так и структурной реакции.
Императорский колледж Лондона
Как запрограммировать 3D-принтер на печать
Перед тем, как приступить к печати какого-либо изделия, необходимо создать его трехмерное изображение. Для этого существуют специальные программы, с помощью которых можно спроектировать все – начиная с крючков для полотенца, заканчивая безумно сложной шестерёнкой или корпусом для квадрокоптера. Но если у вас нет подобных навыков дизайнера, ничего страшного, в интернете имеется куча готовых проектов и примеров. Можно выбрать любой понравившийся.
Суть заключается в том, что каждое изображение подвергается слайсингу. Это такой разбор проекта на составные части, слои. Специальная программа создает такие слайсеры и передает информацию на сам 3D принтер.
Рекомендации по 3D-полимерному принтеру
С течением времени на рынке появляется все больше и больше вариантов принтеров на основе смолы, но выделяются один или два варианта.
Во-первых, есть Elegoo Mars 2, который представляет собой УФ-полимерный ЖК-принтер с разрешением 2K. Он имеет систему быстрого отверждения и использует ЖК-панель с более длительным сроком службы, чем обычно. В нем также есть несколько мер, которые сделают печать смолой более безопасной и менее грязной, например, одноразовую емкость для смолы и силиконовые уплотнения для предотвращения нежелательных запахов и утечек. С более чем 2500 отзывами и средним 4,5-звездочным рейтингом на Amazon, он кажется отличным выбором начального уровня за свои деньги.
В AnyCubic Photon Моно X также привлекли наше внимание как гораздо более дорогой (и дорогостоящий) вариант. Существенно более высокая запрашиваемая цена дает вам большую ЖК-панель с более высоким разрешением и впечатляющий объем сборки, по крайней мере, в отношении принтеров на основе смол
Конечно, вам следует провести собственное исследование в соответствии с вашими конкретными потребностями, но, основываясь на отзывах клиентов и их технических характеристиках, эти два принтера — отличное место для начала.
Программы для Windows, мобильные приложения, игры – ВСЁ БЕСПЛАТНО, в нашем закрытом телеграмм канале – Подписывайтесь:)
Стереолитография (SLA)
Одна из первых технологий 3D-печати. В качестве строительного материала используется смесь жидкого полимера с реагентом-отвердителем, чем-то похожая на эпоксидную смолу. Полимеризация и последующее отвердение смеси происходит под действием ультрафиолетового лазера.
Модель формируется тонкими слоями на подвижной подложке с отверстиями, прикрепленной к микролифту-элеватору, который перемещается вверх или вниз на глубину одного слоя. Во время погружения в жидкий полимер луч лазера фиксируется на местах, подлежащих отвердению. Как только один слой сформирован, заготовка поднимется (опускается).